The synthetic division table is:
$$ \begin{array}{c|rrrrr}2&2&-6&-1&11&-2\\& & 4& -4& -10& \color{black}{2} \\ \hline &\color{blue}{2}&\color{blue}{-2}&\color{blue}{-5}&\color{blue}{1}&\color{orangered}{0} \end{array} $$The remainder when $ 2x^{4}-6x^{3}-x^{2}+11x-2 $ is divided by $ x-2 $ is $ \, \color{red}{ 0 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-6&-1&11&-2\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}2&\color{orangered}{ 2 }&-6&-1&11&-2\\& & & & & \\ \hline &\color{orangered}{2}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 2 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-6&-1&11&-2\\& & \color{blue}{4} & & & \\ \hline &\color{blue}{2}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 4 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrr}2&2&\color{orangered}{ -6 }&-1&11&-2\\& & \color{orangered}{4} & & & \\ \hline &2&\color{orangered}{-2}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-6&-1&11&-2\\& & 4& \color{blue}{-4} & & \\ \hline &2&\color{blue}{-2}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrrrr}2&2&-6&\color{orangered}{ -1 }&11&-2\\& & 4& \color{orangered}{-4} & & \\ \hline &2&-2&\color{orangered}{-5}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -5 \right) } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-6&-1&11&-2\\& & 4& -4& \color{blue}{-10} & \\ \hline &2&-2&\color{blue}{-5}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 11 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}2&2&-6&-1&\color{orangered}{ 11 }&-2\\& & 4& -4& \color{orangered}{-10} & \\ \hline &2&-2&-5&\color{orangered}{1}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-6&-1&11&-2\\& & 4& -4& -10& \color{blue}{2} \\ \hline &2&-2&-5&\color{blue}{1}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 2 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}2&2&-6&-1&11&\color{orangered}{ -2 }\\& & 4& -4& -10& \color{orangered}{2} \\ \hline &\color{blue}{2}&\color{blue}{-2}&\color{blue}{-5}&\color{blue}{1}&\color{orangered}{0} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 0 }\right) $.