The synthetic division table is:
$$ \begin{array}{c|rrr}2&2&0&5\\& & 4& \color{black}{8} \\ \hline &\color{blue}{2}&\color{blue}{4}&\color{orangered}{13} \end{array} $$The remainder when $ 2x^{2}+5 $ is divided by $ x-2 $ is $ \, \color{red}{ 13 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&2&0&5\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ 2 }&0&5\\& & & \\ \hline &\color{orangered}{2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 2 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&2&0&5\\& & \color{blue}{4} & \\ \hline &\color{blue}{2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 4 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrr}2&2&\color{orangered}{ 0 }&5\\& & \color{orangered}{4} & \\ \hline &2&\color{orangered}{4}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 4 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&2&0&5\\& & 4& \color{blue}{8} \\ \hline &2&\color{blue}{4}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 8 } = \color{orangered}{ 13 } $
$$ \begin{array}{c|rrr}2&2&0&\color{orangered}{ 5 }\\& & 4& \color{orangered}{8} \\ \hline &\color{blue}{2}&\color{blue}{4}&\color{orangered}{13} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 13 }\right) $.