The synthetic division table is:
$$ \begin{array}{c|rr}2&-2&2\\& & \color{black}{-4} \\ \hline &\color{blue}{-2}&\color{orangered}{-2} \end{array} $$The remainder when $ -2x+2 $ is divided by $ x-2 $ is $ \, \color{red}{ -2 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{2}&-2&2\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}2&\color{orangered}{ -2 }&2\\& & \\ \hline &\color{orangered}{-2}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rr}\color{blue}{2}&-2&2\\& & \color{blue}{-4} \\ \hline &\color{blue}{-2}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rr}2&-2&\color{orangered}{ 2 }\\& & \color{orangered}{-4} \\ \hline &\color{blue}{-2}&\color{orangered}{-2} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ -2 }\right) $.