The synthetic division table is:
$$ \begin{array}{c|rrrr}24&1&3&-10&24\\& & 24& 648& \color{black}{15312} \\ \hline &\color{blue}{1}&\color{blue}{27}&\color{blue}{638}&\color{orangered}{15336} \end{array} $$Because the remainder $ \left( \color{red}{ 15336 } \right) $ is not zero, we conclude that the $ x-24 $ is not a factor of $ x^{3}+3x^{2}-10x+24$.
First we need to create a synthetic division table.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -24 = 0 $ ( $ x = \color{blue}{ 24 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{24}&1&3&-10&24\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}24&\color{orangered}{ 1 }&3&-10&24\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 24 } \cdot \color{blue}{ 1 } = \color{blue}{ 24 } $.
$$ \begin{array}{c|rrrr}\color{blue}{24}&1&3&-10&24\\& & \color{blue}{24} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ 24 } = \color{orangered}{ 27 } $
$$ \begin{array}{c|rrrr}24&1&\color{orangered}{ 3 }&-10&24\\& & \color{orangered}{24} & & \\ \hline &1&\color{orangered}{27}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 24 } \cdot \color{blue}{ 27 } = \color{blue}{ 648 } $.
$$ \begin{array}{c|rrrr}\color{blue}{24}&1&3&-10&24\\& & 24& \color{blue}{648} & \\ \hline &1&\color{blue}{27}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 648 } = \color{orangered}{ 638 } $
$$ \begin{array}{c|rrrr}24&1&3&\color{orangered}{ -10 }&24\\& & 24& \color{orangered}{648} & \\ \hline &1&27&\color{orangered}{638}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 24 } \cdot \color{blue}{ 638 } = \color{blue}{ 15312 } $.
$$ \begin{array}{c|rrrr}\color{blue}{24}&1&3&-10&24\\& & 24& 648& \color{blue}{15312} \\ \hline &1&27&\color{blue}{638}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 24 } + \color{orangered}{ 15312 } = \color{orangered}{ 15336 } $
$$ \begin{array}{c|rrrr}24&1&3&-10&\color{orangered}{ 24 }\\& & 24& 648& \color{orangered}{15312} \\ \hline &\color{blue}{1}&\color{blue}{27}&\color{blue}{638}&\color{orangered}{15336} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 15336 }\right)$.