The synthetic division table is:
$$ \begin{array}{c|rrrr}2&1&-4&5&-6\\& & 2& -4& \color{black}{2} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{1}&\color{orangered}{-4} \end{array} $$Because the remainder $ \left( \color{red}{ -4 } \right) $ is not zero, we conclude that the $ x-2 $ is not a factor of $ x^{3}-4x^{2}+5x-6$.
First we need to create a synthetic division table.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&-4&5&-6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}2&\color{orangered}{ 1 }&-4&5&-6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&-4&5&-6\\& & \color{blue}{2} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 2 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrr}2&1&\color{orangered}{ -4 }&5&-6\\& & \color{orangered}{2} & & \\ \hline &1&\color{orangered}{-2}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&-4&5&-6\\& & 2& \color{blue}{-4} & \\ \hline &1&\color{blue}{-2}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrr}2&1&-4&\color{orangered}{ 5 }&-6\\& & 2& \color{orangered}{-4} & \\ \hline &1&-2&\color{orangered}{1}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&-4&5&-6\\& & 2& -4& \color{blue}{2} \\ \hline &1&-2&\color{blue}{1}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 2 } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrrr}2&1&-4&5&\color{orangered}{ -6 }\\& & 2& -4& \color{orangered}{2} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{1}&\color{orangered}{-4} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ -4 }\right)$.