The synthetic division table is:
$$ \begin{array}{c|rrrr}-30&1&-2&-23&-60\\& & -30& 960& \color{black}{-28110} \\ \hline &\color{blue}{1}&\color{blue}{-32}&\color{blue}{937}&\color{orangered}{-28170} \end{array} $$Because the remainder $ \left( \color{red}{ -28170 } \right) $ is not zero, we conclude that the $ x+30 $ is not a factor of $ x^{3}-2x^{2}-23x-60$.
First we need to create a synthetic division table.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 30 = 0 $ ( $ x = \color{blue}{ -30 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-30}&1&-2&-23&-60\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-30&\color{orangered}{ 1 }&-2&-23&-60\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -30 } \cdot \color{blue}{ 1 } = \color{blue}{ -30 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-30}&1&-2&-23&-60\\& & \color{blue}{-30} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ \left( -30 \right) } = \color{orangered}{ -32 } $
$$ \begin{array}{c|rrrr}-30&1&\color{orangered}{ -2 }&-23&-60\\& & \color{orangered}{-30} & & \\ \hline &1&\color{orangered}{-32}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -30 } \cdot \color{blue}{ \left( -32 \right) } = \color{blue}{ 960 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-30}&1&-2&-23&-60\\& & -30& \color{blue}{960} & \\ \hline &1&\color{blue}{-32}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -23 } + \color{orangered}{ 960 } = \color{orangered}{ 937 } $
$$ \begin{array}{c|rrrr}-30&1&-2&\color{orangered}{ -23 }&-60\\& & -30& \color{orangered}{960} & \\ \hline &1&-32&\color{orangered}{937}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -30 } \cdot \color{blue}{ 937 } = \color{blue}{ -28110 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-30}&1&-2&-23&-60\\& & -30& 960& \color{blue}{-28110} \\ \hline &1&-32&\color{blue}{937}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -60 } + \color{orangered}{ \left( -28110 \right) } = \color{orangered}{ -28170 } $
$$ \begin{array}{c|rrrr}-30&1&-2&-23&\color{orangered}{ -60 }\\& & -30& 960& \color{orangered}{-28110} \\ \hline &\color{blue}{1}&\color{blue}{-32}&\color{blue}{937}&\color{orangered}{-28170} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ -28170 }\right)$.