The synthetic division table is:
$$ \begin{array}{c|rrrr}60&1&-2&-23&-60\\& & 60& 3480& \color{black}{207420} \\ \hline &\color{blue}{1}&\color{blue}{58}&\color{blue}{3457}&\color{orangered}{207360} \end{array} $$Because the remainder $ \left( \color{red}{ 207360 } \right) $ is not zero, we conclude that the $ x-60 $ is not a factor of $ x^{3}-2x^{2}-23x-60$.
First we need to create a synthetic division table.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -60 = 0 $ ( $ x = \color{blue}{ 60 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{60}&1&-2&-23&-60\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}60&\color{orangered}{ 1 }&-2&-23&-60\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 60 } \cdot \color{blue}{ 1 } = \color{blue}{ 60 } $.
$$ \begin{array}{c|rrrr}\color{blue}{60}&1&-2&-23&-60\\& & \color{blue}{60} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 60 } = \color{orangered}{ 58 } $
$$ \begin{array}{c|rrrr}60&1&\color{orangered}{ -2 }&-23&-60\\& & \color{orangered}{60} & & \\ \hline &1&\color{orangered}{58}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 60 } \cdot \color{blue}{ 58 } = \color{blue}{ 3480 } $.
$$ \begin{array}{c|rrrr}\color{blue}{60}&1&-2&-23&-60\\& & 60& \color{blue}{3480} & \\ \hline &1&\color{blue}{58}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -23 } + \color{orangered}{ 3480 } = \color{orangered}{ 3457 } $
$$ \begin{array}{c|rrrr}60&1&-2&\color{orangered}{ -23 }&-60\\& & 60& \color{orangered}{3480} & \\ \hline &1&58&\color{orangered}{3457}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 60 } \cdot \color{blue}{ 3457 } = \color{blue}{ 207420 } $.
$$ \begin{array}{c|rrrr}\color{blue}{60}&1&-2&-23&-60\\& & 60& 3480& \color{blue}{207420} \\ \hline &1&58&\color{blue}{3457}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -60 } + \color{orangered}{ 207420 } = \color{orangered}{ 207360 } $
$$ \begin{array}{c|rrrr}60&1&-2&-23&\color{orangered}{ -60 }\\& & 60& 3480& \color{orangered}{207420} \\ \hline &\color{blue}{1}&\color{blue}{58}&\color{blue}{3457}&\color{orangered}{207360} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 207360 }\right)$.