The synthetic division table is:
$$ \begin{array}{c|rrr}2&-2&27&-94\\& & -4& \color{black}{46} \\ \hline &\color{blue}{-2}&\color{blue}{23}&\color{orangered}{-48} \end{array} $$Because the remainder $ \left( \color{red}{ -48 } \right) $ is not zero, we conclude that the $ x-2 $ is not a factor of $ -2x^{2}+27x-94$.
First we need to create a synthetic division table.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&-2&27&-94\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ -2 }&27&-94\\& & & \\ \hline &\color{orangered}{-2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&-2&27&-94\\& & \color{blue}{-4} & \\ \hline &\color{blue}{-2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 27 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ 23 } $
$$ \begin{array}{c|rrr}2&-2&\color{orangered}{ 27 }&-94\\& & \color{orangered}{-4} & \\ \hline &-2&\color{orangered}{23}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 23 } = \color{blue}{ 46 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&-2&27&-94\\& & -4& \color{blue}{46} \\ \hline &-2&\color{blue}{23}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -94 } + \color{orangered}{ 46 } = \color{orangered}{ -48 } $
$$ \begin{array}{c|rrr}2&-2&27&\color{orangered}{ -94 }\\& & -4& \color{orangered}{46} \\ \hline &\color{blue}{-2}&\color{blue}{23}&\color{orangered}{-48} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ -48 }\right)$.