The synthetic division table is:
$$ \begin{array}{c|rrrr}-2&1&0&0&6\\& & -2& 4& \color{black}{-8} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{4}&\color{orangered}{-2} \end{array} $$The solution is:
$$ \frac{ x^{3}+6 }{ x+2 } = \color{blue}{x^{2}-2x+4} \color{red}{~-~} \frac{ \color{red}{ 2 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&0&0&6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-2&\color{orangered}{ 1 }&0&0&6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&0&0&6\\& & \color{blue}{-2} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrr}-2&1&\color{orangered}{ 0 }&0&6\\& & \color{orangered}{-2} & & \\ \hline &1&\color{orangered}{-2}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&0&0&6\\& & -2& \color{blue}{4} & \\ \hline &1&\color{blue}{-2}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 4 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrr}-2&1&0&\color{orangered}{ 0 }&6\\& & -2& \color{orangered}{4} & \\ \hline &1&-2&\color{orangered}{4}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 4 } = \color{blue}{ -8 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&0&0&6\\& & -2& 4& \color{blue}{-8} \\ \hline &1&-2&\color{blue}{4}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -8 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrr}-2&1&0&0&\color{orangered}{ 6 }\\& & -2& 4& \color{orangered}{-8} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{4}&\color{orangered}{-2} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-2x+4 } $ with a remainder of $ \color{red}{ -2 } $.