The synthetic division table is:
$$ \begin{array}{c|rrrr}2&1&5&-14&0\\& & 2& 14& \color{black}{0} \\ \hline &\color{blue}{1}&\color{blue}{7}&\color{blue}{0}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}+5x^{2}-14x }{ x-2 } = \color{blue}{x^{2}+7x} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&5&-14&0\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}2&\color{orangered}{ 1 }&5&-14&0\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&5&-14&0\\& & \color{blue}{2} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 2 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrr}2&1&\color{orangered}{ 5 }&-14&0\\& & \color{orangered}{2} & & \\ \hline &1&\color{orangered}{7}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 7 } = \color{blue}{ 14 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&5&-14&0\\& & 2& \color{blue}{14} & \\ \hline &1&\color{blue}{7}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 14 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}2&1&5&\color{orangered}{ -14 }&0\\& & 2& \color{orangered}{14} & \\ \hline &1&7&\color{orangered}{0}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&1&5&-14&0\\& & 2& 14& \color{blue}{0} \\ \hline &1&7&\color{blue}{0}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}2&1&5&-14&\color{orangered}{ 0 }\\& & 2& 14& \color{orangered}{0} \\ \hline &\color{blue}{1}&\color{blue}{7}&\color{blue}{0}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+7x } $ with a remainder of $ \color{red}{ 0 } $.