The synthetic division table is:
$$ \begin{array}{c|rr}-1&1&-2\\& & \color{black}{-1} \\ \hline &\color{blue}{1}&\color{orangered}{-3} \end{array} $$The solution is:
$$ \frac{ x-2 }{ x+1 } = \color{blue}{1} \color{red}{~-~} \frac{ \color{red}{ 3 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{-1}&1&-2\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}-1&\color{orangered}{ 1 }&-2\\& & \\ \hline &\color{orangered}{1}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rr}\color{blue}{-1}&1&-2\\& & \color{blue}{-1} \\ \hline &\color{blue}{1}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ -3 } $
$$ \begin{array}{c|rr}-1&1&\color{orangered}{ -2 }\\& & \color{orangered}{-1} \\ \hline &\color{blue}{1}&\color{orangered}{-3} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 1 } $ with a remainder of $ \color{red}{ -3 } $.