The synthetic division table is:
$$ \begin{array}{c|rrrr}-2&15&2&1&4\\& & -30& 56& \color{black}{-114} \\ \hline &\color{blue}{15}&\color{blue}{-28}&\color{blue}{57}&\color{orangered}{-110} \end{array} $$The solution is:
$$ \frac{ 15x^{3}+2x^{2}+x+4 }{ x+2 } = \color{blue}{15x^{2}-28x+57} \color{red}{~-~} \frac{ \color{red}{ 110 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&15&2&1&4\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-2&\color{orangered}{ 15 }&2&1&4\\& & & & \\ \hline &\color{orangered}{15}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 15 } = \color{blue}{ -30 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&15&2&1&4\\& & \color{blue}{-30} & & \\ \hline &\color{blue}{15}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ \left( -30 \right) } = \color{orangered}{ -28 } $
$$ \begin{array}{c|rrrr}-2&15&\color{orangered}{ 2 }&1&4\\& & \color{orangered}{-30} & & \\ \hline &15&\color{orangered}{-28}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -28 \right) } = \color{blue}{ 56 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&15&2&1&4\\& & -30& \color{blue}{56} & \\ \hline &15&\color{blue}{-28}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 1 } + \color{orangered}{ 56 } = \color{orangered}{ 57 } $
$$ \begin{array}{c|rrrr}-2&15&2&\color{orangered}{ 1 }&4\\& & -30& \color{orangered}{56} & \\ \hline &15&-28&\color{orangered}{57}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 57 } = \color{blue}{ -114 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&15&2&1&4\\& & -30& 56& \color{blue}{-114} \\ \hline &15&-28&\color{blue}{57}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ \left( -114 \right) } = \color{orangered}{ -110 } $
$$ \begin{array}{c|rrrr}-2&15&2&1&\color{orangered}{ 4 }\\& & -30& 56& \color{orangered}{-114} \\ \hline &\color{blue}{15}&\color{blue}{-28}&\color{blue}{57}&\color{orangered}{-110} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 15x^{2}-28x+57 } $ with a remainder of $ \color{red}{ -110 } $.