The synthetic division table is:
$$ \begin{array}{c|rrrr}-1&1&-8&17&-10\\& & -1& 9& \color{black}{-26} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{26}&\color{orangered}{-36} \end{array} $$The solution is:
$$ \frac{ x^{3}-8x^{2}+17x-10 }{ x+1 } = \color{blue}{x^{2}-9x+26} \color{red}{~-~} \frac{ \color{red}{ 36 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-8&17&-10\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-1&\color{orangered}{ 1 }&-8&17&-10\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-8&17&-10\\& & \color{blue}{-1} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -8 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrr}-1&1&\color{orangered}{ -8 }&17&-10\\& & \color{orangered}{-1} & & \\ \hline &1&\color{orangered}{-9}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-8&17&-10\\& & -1& \color{blue}{9} & \\ \hline &1&\color{blue}{-9}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 17 } + \color{orangered}{ 9 } = \color{orangered}{ 26 } $
$$ \begin{array}{c|rrrr}-1&1&-8&\color{orangered}{ 17 }&-10\\& & -1& \color{orangered}{9} & \\ \hline &1&-9&\color{orangered}{26}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 26 } = \color{blue}{ -26 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-8&17&-10\\& & -1& 9& \color{blue}{-26} \\ \hline &1&-9&\color{blue}{26}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ \left( -26 \right) } = \color{orangered}{ -36 } $
$$ \begin{array}{c|rrrr}-1&1&-8&17&\color{orangered}{ -10 }\\& & -1& 9& \color{orangered}{-26} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{26}&\color{orangered}{-36} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-9x+26 } $ with a remainder of $ \color{red}{ -36 } $.