The synthetic division table is:
$$ \begin{array}{c|rrrrrr}-1&1&6&5&16&-12&-16\\& & -1& -5& 0& -16& \color{black}{28} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{0}&\color{blue}{16}&\color{blue}{-28}&\color{orangered}{12} \end{array} $$The solution is:
$$ \frac{ x^{5}+6x^{4}+5x^{3}+16x^{2}-12x-16 }{ x+1 } = \color{blue}{x^{4}+5x^{3}+16x-28} ~+~ \frac{ \color{red}{ 12 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrrrr}\color{blue}{-1}&1&6&5&16&-12&-16\\& & & & & & \\ \hline &&&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrrr}-1&\color{orangered}{ 1 }&6&5&16&-12&-16\\& & & & & & \\ \hline &\color{orangered}{1}&&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-1}&1&6&5&16&-12&-16\\& & \color{blue}{-1} & & & & \\ \hline &\color{blue}{1}&&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrrrr}-1&1&\color{orangered}{ 6 }&5&16&-12&-16\\& & \color{orangered}{-1} & & & & \\ \hline &1&\color{orangered}{5}&&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 5 } = \color{blue}{ -5 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-1}&1&6&5&16&-12&-16\\& & -1& \color{blue}{-5} & & & \\ \hline &1&\color{blue}{5}&&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ \left( -5 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrrr}-1&1&6&\color{orangered}{ 5 }&16&-12&-16\\& & -1& \color{orangered}{-5} & & & \\ \hline &1&5&\color{orangered}{0}&&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-1}&1&6&5&16&-12&-16\\& & -1& -5& \color{blue}{0} & & \\ \hline &1&5&\color{blue}{0}&&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 16 } + \color{orangered}{ 0 } = \color{orangered}{ 16 } $
$$ \begin{array}{c|rrrrrr}-1&1&6&5&\color{orangered}{ 16 }&-12&-16\\& & -1& -5& \color{orangered}{0} & & \\ \hline &1&5&0&\color{orangered}{16}&& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 16 } = \color{blue}{ -16 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-1}&1&6&5&16&-12&-16\\& & -1& -5& 0& \color{blue}{-16} & \\ \hline &1&5&0&\color{blue}{16}&& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -12 } + \color{orangered}{ \left( -16 \right) } = \color{orangered}{ -28 } $
$$ \begin{array}{c|rrrrrr}-1&1&6&5&16&\color{orangered}{ -12 }&-16\\& & -1& -5& 0& \color{orangered}{-16} & \\ \hline &1&5&0&16&\color{orangered}{-28}& \end{array} $$Step 10 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -28 \right) } = \color{blue}{ 28 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-1}&1&6&5&16&-12&-16\\& & -1& -5& 0& -16& \color{blue}{28} \\ \hline &1&5&0&16&\color{blue}{-28}& \end{array} $$Step 11 : Add down last column: $ \color{orangered}{ -16 } + \color{orangered}{ 28 } = \color{orangered}{ 12 } $
$$ \begin{array}{c|rrrrrr}-1&1&6&5&16&-12&\color{orangered}{ -16 }\\& & -1& -5& 0& -16& \color{orangered}{28} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{0}&\color{blue}{16}&\color{blue}{-28}&\color{orangered}{12} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{4}+5x^{3}+16x-28 } $ with a remainder of $ \color{red}{ 12 } $.