The synthetic division table is:
$$ \begin{array}{c|rrrrrr}1&1&0&6&0&0&-7\\& & 1& 1& 7& 7& \color{black}{7} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{7}&\color{blue}{7}&\color{blue}{7}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{5}+6x^{3}-7 }{ x-1 } = \color{blue}{x^{4}+x^{3}+7x^{2}+7x+7} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrrr}\color{blue}{1}&1&0&6&0&0&-7\\& & & & & & \\ \hline &&&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrrr}1&\color{orangered}{ 1 }&0&6&0&0&-7\\& & & & & & \\ \hline &\color{orangered}{1}&&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{1}&1&0&6&0&0&-7\\& & \color{blue}{1} & & & & \\ \hline &\color{blue}{1}&&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 1 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrrr}1&1&\color{orangered}{ 0 }&6&0&0&-7\\& & \color{orangered}{1} & & & & \\ \hline &1&\color{orangered}{1}&&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{1}&1&0&6&0&0&-7\\& & 1& \color{blue}{1} & & & \\ \hline &1&\color{blue}{1}&&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ 1 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrrrr}1&1&0&\color{orangered}{ 6 }&0&0&-7\\& & 1& \color{orangered}{1} & & & \\ \hline &1&1&\color{orangered}{7}&&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 7 } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{1}&1&0&6&0&0&-7\\& & 1& 1& \color{blue}{7} & & \\ \hline &1&1&\color{blue}{7}&&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 7 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrrrr}1&1&0&6&\color{orangered}{ 0 }&0&-7\\& & 1& 1& \color{orangered}{7} & & \\ \hline &1&1&7&\color{orangered}{7}&& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 7 } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{1}&1&0&6&0&0&-7\\& & 1& 1& 7& \color{blue}{7} & \\ \hline &1&1&7&\color{blue}{7}&& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 7 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrrrr}1&1&0&6&0&\color{orangered}{ 0 }&-7\\& & 1& 1& 7& \color{orangered}{7} & \\ \hline &1&1&7&7&\color{orangered}{7}& \end{array} $$Step 10 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 7 } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{1}&1&0&6&0&0&-7\\& & 1& 1& 7& 7& \color{blue}{7} \\ \hline &1&1&7&7&\color{blue}{7}& \end{array} $$Step 11 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ 7 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrrr}1&1&0&6&0&0&\color{orangered}{ -7 }\\& & 1& 1& 7& 7& \color{orangered}{7} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{7}&\color{blue}{7}&\color{blue}{7}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{4}+x^{3}+7x^{2}+7x+7 } $ with a remainder of $ \color{red}{ 0 } $.