The synthetic division table is:
$$ \begin{array}{c|rrrrrr}-2&1&0&-1&0&2&0\\& & -2& 4& -6& 12& \color{black}{-28} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{3}&\color{blue}{-6}&\color{blue}{14}&\color{orangered}{-28} \end{array} $$The solution is:
$$ \frac{ x^{5}-x^{3}+2x }{ x+2 } = \color{blue}{x^{4}-2x^{3}+3x^{2}-6x+14} \color{red}{~-~} \frac{ \color{red}{ 28 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrrrr}\color{blue}{-2}&1&0&-1&0&2&0\\& & & & & & \\ \hline &&&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrrr}-2&\color{orangered}{ 1 }&0&-1&0&2&0\\& & & & & & \\ \hline &\color{orangered}{1}&&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-2}&1&0&-1&0&2&0\\& & \color{blue}{-2} & & & & \\ \hline &\color{blue}{1}&&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrrr}-2&1&\color{orangered}{ 0 }&-1&0&2&0\\& & \color{orangered}{-2} & & & & \\ \hline &1&\color{orangered}{-2}&&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-2}&1&0&-1&0&2&0\\& & -2& \color{blue}{4} & & & \\ \hline &1&\color{blue}{-2}&&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ 4 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrrrr}-2&1&0&\color{orangered}{ -1 }&0&2&0\\& & -2& \color{orangered}{4} & & & \\ \hline &1&-2&\color{orangered}{3}&&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 3 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-2}&1&0&-1&0&2&0\\& & -2& 4& \color{blue}{-6} & & \\ \hline &1&-2&\color{blue}{3}&&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ -6 } $
$$ \begin{array}{c|rrrrrr}-2&1&0&-1&\color{orangered}{ 0 }&2&0\\& & -2& 4& \color{orangered}{-6} & & \\ \hline &1&-2&3&\color{orangered}{-6}&& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -6 \right) } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-2}&1&0&-1&0&2&0\\& & -2& 4& -6& \color{blue}{12} & \\ \hline &1&-2&3&\color{blue}{-6}&& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 12 } = \color{orangered}{ 14 } $
$$ \begin{array}{c|rrrrrr}-2&1&0&-1&0&\color{orangered}{ 2 }&0\\& & -2& 4& -6& \color{orangered}{12} & \\ \hline &1&-2&3&-6&\color{orangered}{14}& \end{array} $$Step 10 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 14 } = \color{blue}{ -28 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{-2}&1&0&-1&0&2&0\\& & -2& 4& -6& 12& \color{blue}{-28} \\ \hline &1&-2&3&-6&\color{blue}{14}& \end{array} $$Step 11 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -28 \right) } = \color{orangered}{ -28 } $
$$ \begin{array}{c|rrrrrr}-2&1&0&-1&0&2&\color{orangered}{ 0 }\\& & -2& 4& -6& 12& \color{orangered}{-28} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{3}&\color{blue}{-6}&\color{blue}{14}&\color{orangered}{-28} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{4}-2x^{3}+3x^{2}-6x+14 } $ with a remainder of $ \color{red}{ -28 } $.