The synthetic division table is:
$$ \begin{array}{c|rrrrrr}9&1&0&0&0&0&-98\\& & 9& 81& 729& 6561& \color{black}{59049} \\ \hline &\color{blue}{1}&\color{blue}{9}&\color{blue}{81}&\color{blue}{729}&\color{blue}{6561}&\color{orangered}{58951} \end{array} $$The solution is:
$$ \frac{ x^{5}-98 }{ x-9 } = \color{blue}{x^{4}+9x^{3}+81x^{2}+729x+6561} ~+~ \frac{ \color{red}{ 58951 } }{ x-9 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -9 = 0 $ ( $ x = \color{blue}{ 9 } $ ) at the left.
$$ \begin{array}{c|rrrrrr}\color{blue}{9}&1&0&0&0&0&-98\\& & & & & & \\ \hline &&&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrrr}9&\color{orangered}{ 1 }&0&0&0&0&-98\\& & & & & & \\ \hline &\color{orangered}{1}&&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 1 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{9}&1&0&0&0&0&-98\\& & \color{blue}{9} & & & & \\ \hline &\color{blue}{1}&&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 9 } = \color{orangered}{ 9 } $
$$ \begin{array}{c|rrrrrr}9&1&\color{orangered}{ 0 }&0&0&0&-98\\& & \color{orangered}{9} & & & & \\ \hline &1&\color{orangered}{9}&&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 9 } = \color{blue}{ 81 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{9}&1&0&0&0&0&-98\\& & 9& \color{blue}{81} & & & \\ \hline &1&\color{blue}{9}&&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 81 } = \color{orangered}{ 81 } $
$$ \begin{array}{c|rrrrrr}9&1&0&\color{orangered}{ 0 }&0&0&-98\\& & 9& \color{orangered}{81} & & & \\ \hline &1&9&\color{orangered}{81}&&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 81 } = \color{blue}{ 729 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{9}&1&0&0&0&0&-98\\& & 9& 81& \color{blue}{729} & & \\ \hline &1&9&\color{blue}{81}&&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 729 } = \color{orangered}{ 729 } $
$$ \begin{array}{c|rrrrrr}9&1&0&0&\color{orangered}{ 0 }&0&-98\\& & 9& 81& \color{orangered}{729} & & \\ \hline &1&9&81&\color{orangered}{729}&& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 729 } = \color{blue}{ 6561 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{9}&1&0&0&0&0&-98\\& & 9& 81& 729& \color{blue}{6561} & \\ \hline &1&9&81&\color{blue}{729}&& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 6561 } = \color{orangered}{ 6561 } $
$$ \begin{array}{c|rrrrrr}9&1&0&0&0&\color{orangered}{ 0 }&-98\\& & 9& 81& 729& \color{orangered}{6561} & \\ \hline &1&9&81&729&\color{orangered}{6561}& \end{array} $$Step 10 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 6561 } = \color{blue}{ 59049 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{9}&1&0&0&0&0&-98\\& & 9& 81& 729& 6561& \color{blue}{59049} \\ \hline &1&9&81&729&\color{blue}{6561}& \end{array} $$Step 11 : Add down last column: $ \color{orangered}{ -98 } + \color{orangered}{ 59049 } = \color{orangered}{ 58951 } $
$$ \begin{array}{c|rrrrrr}9&1&0&0&0&0&\color{orangered}{ -98 }\\& & 9& 81& 729& 6561& \color{orangered}{59049} \\ \hline &\color{blue}{1}&\color{blue}{9}&\color{blue}{81}&\color{blue}{729}&\color{blue}{6561}&\color{orangered}{58951} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{4}+9x^{3}+81x^{2}+729x+6561 } $ with a remainder of $ \color{red}{ 58951 } $.