The synthetic division table is:
$$ \begin{array}{c|rrrrrr}2&1&0&-17&30&0&-16\\& & 2& 4& -26& 8& \color{black}{16} \\ \hline &\color{blue}{1}&\color{blue}{2}&\color{blue}{-13}&\color{blue}{4}&\color{blue}{8}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{5}-17x^{3}+30x^{2}-16 }{ x-2 } = \color{blue}{x^{4}+2x^{3}-13x^{2}+4x+8} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&0&-17&30&0&-16\\& & & & & & \\ \hline &&&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrrr}2&\color{orangered}{ 1 }&0&-17&30&0&-16\\& & & & & & \\ \hline &\color{orangered}{1}&&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&0&-17&30&0&-16\\& & \color{blue}{2} & & & & \\ \hline &\color{blue}{1}&&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 2 } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrrrr}2&1&\color{orangered}{ 0 }&-17&30&0&-16\\& & \color{orangered}{2} & & & & \\ \hline &1&\color{orangered}{2}&&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 2 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&0&-17&30&0&-16\\& & 2& \color{blue}{4} & & & \\ \hline &1&\color{blue}{2}&&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -17 } + \color{orangered}{ 4 } = \color{orangered}{ -13 } $
$$ \begin{array}{c|rrrrrr}2&1&0&\color{orangered}{ -17 }&30&0&-16\\& & 2& \color{orangered}{4} & & & \\ \hline &1&2&\color{orangered}{-13}&&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -13 \right) } = \color{blue}{ -26 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&0&-17&30&0&-16\\& & 2& 4& \color{blue}{-26} & & \\ \hline &1&2&\color{blue}{-13}&&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 30 } + \color{orangered}{ \left( -26 \right) } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrrr}2&1&0&-17&\color{orangered}{ 30 }&0&-16\\& & 2& 4& \color{orangered}{-26} & & \\ \hline &1&2&-13&\color{orangered}{4}&& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 4 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&0&-17&30&0&-16\\& & 2& 4& -26& \color{blue}{8} & \\ \hline &1&2&-13&\color{blue}{4}&& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 8 } = \color{orangered}{ 8 } $
$$ \begin{array}{c|rrrrrr}2&1&0&-17&30&\color{orangered}{ 0 }&-16\\& & 2& 4& -26& \color{orangered}{8} & \\ \hline &1&2&-13&4&\color{orangered}{8}& \end{array} $$Step 10 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 8 } = \color{blue}{ 16 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&0&-17&30&0&-16\\& & 2& 4& -26& 8& \color{blue}{16} \\ \hline &1&2&-13&4&\color{blue}{8}& \end{array} $$Step 11 : Add down last column: $ \color{orangered}{ -16 } + \color{orangered}{ 16 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrrr}2&1&0&-17&30&0&\color{orangered}{ -16 }\\& & 2& 4& -26& 8& \color{orangered}{16} \\ \hline &\color{blue}{1}&\color{blue}{2}&\color{blue}{-13}&\color{blue}{4}&\color{blue}{8}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{4}+2x^{3}-13x^{2}+4x+8 } $ with a remainder of $ \color{red}{ 0 } $.