The synthetic division table is:
$$ \begin{array}{c|rrrrr}1&1&1&-2&8&-2\\& & 1& 2& 0& \color{black}{8} \\ \hline &\color{blue}{1}&\color{blue}{2}&\color{blue}{0}&\color{blue}{8}&\color{orangered}{6} \end{array} $$The solution is:
$$ \frac{ x^{4}+x^{3}-2x^{2}+8x-2 }{ x-1 } = \color{blue}{x^{3}+2x^{2}+8} ~+~ \frac{ \color{red}{ 6 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&1&-2&8&-2\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}1&\color{orangered}{ 1 }&1&-2&8&-2\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&1&-2&8&-2\\& & \color{blue}{1} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 1 } + \color{orangered}{ 1 } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrrr}1&1&\color{orangered}{ 1 }&-2&8&-2\\& & \color{orangered}{1} & & & \\ \hline &1&\color{orangered}{2}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 2 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&1&-2&8&-2\\& & 1& \color{blue}{2} & & \\ \hline &1&\color{blue}{2}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 2 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}1&1&1&\color{orangered}{ -2 }&8&-2\\& & 1& \color{orangered}{2} & & \\ \hline &1&2&\color{orangered}{0}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&1&-2&8&-2\\& & 1& 2& \color{blue}{0} & \\ \hline &1&2&\color{blue}{0}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ 0 } = \color{orangered}{ 8 } $
$$ \begin{array}{c|rrrrr}1&1&1&-2&\color{orangered}{ 8 }&-2\\& & 1& 2& \color{orangered}{0} & \\ \hline &1&2&0&\color{orangered}{8}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 8 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&1&-2&8&-2\\& & 1& 2& 0& \color{blue}{8} \\ \hline &1&2&0&\color{blue}{8}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 8 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrrr}1&1&1&-2&8&\color{orangered}{ -2 }\\& & 1& 2& 0& \color{orangered}{8} \\ \hline &\color{blue}{1}&\color{blue}{2}&\color{blue}{0}&\color{blue}{8}&\color{orangered}{6} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+2x^{2}+8 } $ with a remainder of $ \color{red}{ 6 } $.