The synthetic division table is:
$$ \begin{array}{c|rrrrr}2&1&7&12&28&16\\& & 2& 18& 60& \color{black}{176} \\ \hline &\color{blue}{1}&\color{blue}{9}&\color{blue}{30}&\color{blue}{88}&\color{orangered}{192} \end{array} $$The solution is:
$$ \frac{ x^{4}+7x^{3}+12x^{2}+28x+16 }{ x-2 } = \color{blue}{x^{3}+9x^{2}+30x+88} ~+~ \frac{ \color{red}{ 192 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&7&12&28&16\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}2&\color{orangered}{ 1 }&7&12&28&16\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&7&12&28&16\\& & \color{blue}{2} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ 2 } = \color{orangered}{ 9 } $
$$ \begin{array}{c|rrrrr}2&1&\color{orangered}{ 7 }&12&28&16\\& & \color{orangered}{2} & & & \\ \hline &1&\color{orangered}{9}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 9 } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&7&12&28&16\\& & 2& \color{blue}{18} & & \\ \hline &1&\color{blue}{9}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 12 } + \color{orangered}{ 18 } = \color{orangered}{ 30 } $
$$ \begin{array}{c|rrrrr}2&1&7&\color{orangered}{ 12 }&28&16\\& & 2& \color{orangered}{18} & & \\ \hline &1&9&\color{orangered}{30}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 30 } = \color{blue}{ 60 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&7&12&28&16\\& & 2& 18& \color{blue}{60} & \\ \hline &1&9&\color{blue}{30}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 28 } + \color{orangered}{ 60 } = \color{orangered}{ 88 } $
$$ \begin{array}{c|rrrrr}2&1&7&12&\color{orangered}{ 28 }&16\\& & 2& 18& \color{orangered}{60} & \\ \hline &1&9&30&\color{orangered}{88}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 88 } = \color{blue}{ 176 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&7&12&28&16\\& & 2& 18& 60& \color{blue}{176} \\ \hline &1&9&30&\color{blue}{88}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 16 } + \color{orangered}{ 176 } = \color{orangered}{ 192 } $
$$ \begin{array}{c|rrrrr}2&1&7&12&28&\color{orangered}{ 16 }\\& & 2& 18& 60& \color{orangered}{176} \\ \hline &\color{blue}{1}&\color{blue}{9}&\color{blue}{30}&\color{blue}{88}&\color{orangered}{192} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+9x^{2}+30x+88 } $ with a remainder of $ \color{red}{ 192 } $.