The synthetic division table is:
$$ \begin{array}{c|rrrrr}-2&1&7&-12&-100&-112\\& & -2& -10& 44& \color{black}{112} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{-22}&\color{blue}{-56}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{4}+7x^{3}-12x^{2}-100x-112 }{ x+2 } = \color{blue}{x^{3}+5x^{2}-22x-56} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&7&-12&-100&-112\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-2&\color{orangered}{ 1 }&7&-12&-100&-112\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&7&-12&-100&-112\\& & \color{blue}{-2} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrrr}-2&1&\color{orangered}{ 7 }&-12&-100&-112\\& & \color{orangered}{-2} & & & \\ \hline &1&\color{orangered}{5}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 5 } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&7&-12&-100&-112\\& & -2& \color{blue}{-10} & & \\ \hline &1&\color{blue}{5}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -12 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ -22 } $
$$ \begin{array}{c|rrrrr}-2&1&7&\color{orangered}{ -12 }&-100&-112\\& & -2& \color{orangered}{-10} & & \\ \hline &1&5&\color{orangered}{-22}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -22 \right) } = \color{blue}{ 44 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&7&-12&-100&-112\\& & -2& -10& \color{blue}{44} & \\ \hline &1&5&\color{blue}{-22}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -100 } + \color{orangered}{ 44 } = \color{orangered}{ -56 } $
$$ \begin{array}{c|rrrrr}-2&1&7&-12&\color{orangered}{ -100 }&-112\\& & -2& -10& \color{orangered}{44} & \\ \hline &1&5&-22&\color{orangered}{-56}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -56 \right) } = \color{blue}{ 112 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&7&-12&-100&-112\\& & -2& -10& 44& \color{blue}{112} \\ \hline &1&5&-22&\color{blue}{-56}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -112 } + \color{orangered}{ 112 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-2&1&7&-12&-100&\color{orangered}{ -112 }\\& & -2& -10& 44& \color{orangered}{112} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{-22}&\color{blue}{-56}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+5x^{2}-22x-56 } $ with a remainder of $ \color{red}{ 0 } $.