The synthetic division table is:
$$ \begin{array}{c|rrrrr}-2&1&6&8&3&6\\& & -2& -8& 0& \color{black}{-6} \\ \hline &\color{blue}{1}&\color{blue}{4}&\color{blue}{0}&\color{blue}{3}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{4}+6x^{3}+8x^{2}+3x+6 }{ x+2 } = \color{blue}{x^{3}+4x^{2}+3} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&6&8&3&6\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-2&\color{orangered}{ 1 }&6&8&3&6\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&6&8&3&6\\& & \color{blue}{-2} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}-2&1&\color{orangered}{ 6 }&8&3&6\\& & \color{orangered}{-2} & & & \\ \hline &1&\color{orangered}{4}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 4 } = \color{blue}{ -8 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&6&8&3&6\\& & -2& \color{blue}{-8} & & \\ \hline &1&\color{blue}{4}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ \left( -8 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-2&1&6&\color{orangered}{ 8 }&3&6\\& & -2& \color{orangered}{-8} & & \\ \hline &1&4&\color{orangered}{0}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&6&8&3&6\\& & -2& -8& \color{blue}{0} & \\ \hline &1&4&\color{blue}{0}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ 0 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrrr}-2&1&6&8&\color{orangered}{ 3 }&6\\& & -2& -8& \color{orangered}{0} & \\ \hline &1&4&0&\color{orangered}{3}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 3 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&1&6&8&3&6\\& & -2& -8& 0& \color{blue}{-6} \\ \hline &1&4&0&\color{blue}{3}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-2&1&6&8&3&\color{orangered}{ 6 }\\& & -2& -8& 0& \color{orangered}{-6} \\ \hline &\color{blue}{1}&\color{blue}{4}&\color{blue}{0}&\color{blue}{3}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+4x^{2}+3 } $ with a remainder of $ \color{red}{ 0 } $.