The synthetic division table is:
$$ \begin{array}{c|rrrrr}1&1&3&8&-1&-3\\& & 1& 4& 12& \color{black}{11} \\ \hline &\color{blue}{1}&\color{blue}{4}&\color{blue}{12}&\color{blue}{11}&\color{orangered}{8} \end{array} $$The solution is:
$$ \frac{ x^{4}+3x^{3}+8x^{2}-x-3 }{ x-1 } = \color{blue}{x^{3}+4x^{2}+12x+11} ~+~ \frac{ \color{red}{ 8 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&3&8&-1&-3\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}1&\color{orangered}{ 1 }&3&8&-1&-3\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&3&8&-1&-3\\& & \color{blue}{1} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ 1 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}1&1&\color{orangered}{ 3 }&8&-1&-3\\& & \color{orangered}{1} & & & \\ \hline &1&\color{orangered}{4}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 4 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&3&8&-1&-3\\& & 1& \color{blue}{4} & & \\ \hline &1&\color{blue}{4}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ 4 } = \color{orangered}{ 12 } $
$$ \begin{array}{c|rrrrr}1&1&3&\color{orangered}{ 8 }&-1&-3\\& & 1& \color{orangered}{4} & & \\ \hline &1&4&\color{orangered}{12}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 12 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&3&8&-1&-3\\& & 1& 4& \color{blue}{12} & \\ \hline &1&4&\color{blue}{12}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ 12 } = \color{orangered}{ 11 } $
$$ \begin{array}{c|rrrrr}1&1&3&8&\color{orangered}{ -1 }&-3\\& & 1& 4& \color{orangered}{12} & \\ \hline &1&4&12&\color{orangered}{11}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 11 } = \color{blue}{ 11 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&3&8&-1&-3\\& & 1& 4& 12& \color{blue}{11} \\ \hline &1&4&12&\color{blue}{11}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 11 } = \color{orangered}{ 8 } $
$$ \begin{array}{c|rrrrr}1&1&3&8&-1&\color{orangered}{ -3 }\\& & 1& 4& 12& \color{orangered}{11} \\ \hline &\color{blue}{1}&\color{blue}{4}&\color{blue}{12}&\color{blue}{11}&\color{orangered}{8} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+4x^{2}+12x+11 } $ with a remainder of $ \color{red}{ 8 } $.