The synthetic division table is:
$$ \begin{array}{c|rrrrr}3&1&2&-23&12&36\\& & 3& 15& -24& \color{black}{-36} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{-8}&\color{blue}{-12}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{4}+2x^{3}-23x^{2}+12x+36 }{ x-3 } = \color{blue}{x^{3}+5x^{2}-8x-12} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&2&-23&12&36\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}3&\color{orangered}{ 1 }&2&-23&12&36\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&2&-23&12&36\\& & \color{blue}{3} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 3 } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrrr}3&1&\color{orangered}{ 2 }&-23&12&36\\& & \color{orangered}{3} & & & \\ \hline &1&\color{orangered}{5}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 5 } = \color{blue}{ 15 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&2&-23&12&36\\& & 3& \color{blue}{15} & & \\ \hline &1&\color{blue}{5}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -23 } + \color{orangered}{ 15 } = \color{orangered}{ -8 } $
$$ \begin{array}{c|rrrrr}3&1&2&\color{orangered}{ -23 }&12&36\\& & 3& \color{orangered}{15} & & \\ \hline &1&5&\color{orangered}{-8}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -8 \right) } = \color{blue}{ -24 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&2&-23&12&36\\& & 3& 15& \color{blue}{-24} & \\ \hline &1&5&\color{blue}{-8}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 12 } + \color{orangered}{ \left( -24 \right) } = \color{orangered}{ -12 } $
$$ \begin{array}{c|rrrrr}3&1&2&-23&\color{orangered}{ 12 }&36\\& & 3& 15& \color{orangered}{-24} & \\ \hline &1&5&-8&\color{orangered}{-12}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -12 \right) } = \color{blue}{ -36 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&2&-23&12&36\\& & 3& 15& -24& \color{blue}{-36} \\ \hline &1&5&-8&\color{blue}{-12}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 36 } + \color{orangered}{ \left( -36 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}3&1&2&-23&12&\color{orangered}{ 36 }\\& & 3& 15& -24& \color{orangered}{-36} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{-8}&\color{blue}{-12}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+5x^{2}-8x-12 } $ with a remainder of $ \color{red}{ 0 } $.