The synthetic division table is:
$$ \begin{array}{c|rrrrr}2&1&-9&10&10&-4\\& & 2& -14& -8& \color{black}{4} \\ \hline &\color{blue}{1}&\color{blue}{-7}&\color{blue}{-4}&\color{blue}{2}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{4}-9x^{3}+10x^{2}+10x-4 }{ x-2 } = \color{blue}{x^{3}-7x^{2}-4x+2} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&-9&10&10&-4\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}2&\color{orangered}{ 1 }&-9&10&10&-4\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&-9&10&10&-4\\& & \color{blue}{2} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 2 } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrrrr}2&1&\color{orangered}{ -9 }&10&10&-4\\& & \color{orangered}{2} & & & \\ \hline &1&\color{orangered}{-7}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -7 \right) } = \color{blue}{ -14 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&-9&10&10&-4\\& & 2& \color{blue}{-14} & & \\ \hline &1&\color{blue}{-7}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 10 } + \color{orangered}{ \left( -14 \right) } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrrrr}2&1&-9&\color{orangered}{ 10 }&10&-4\\& & 2& \color{orangered}{-14} & & \\ \hline &1&-7&\color{orangered}{-4}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -4 \right) } = \color{blue}{ -8 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&-9&10&10&-4\\& & 2& -14& \color{blue}{-8} & \\ \hline &1&-7&\color{blue}{-4}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 10 } + \color{orangered}{ \left( -8 \right) } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrrr}2&1&-9&10&\color{orangered}{ 10 }&-4\\& & 2& -14& \color{orangered}{-8} & \\ \hline &1&-7&-4&\color{orangered}{2}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 2 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&-9&10&10&-4\\& & 2& -14& -8& \color{blue}{4} \\ \hline &1&-7&-4&\color{blue}{2}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 4 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}2&1&-9&10&10&\color{orangered}{ -4 }\\& & 2& -14& -8& \color{orangered}{4} \\ \hline &\color{blue}{1}&\color{blue}{-7}&\color{blue}{-4}&\color{blue}{2}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}-7x^{2}-4x+2 } $ with a remainder of $ \color{red}{ 0 } $.