The synthetic division table is:
$$ \begin{array}{c|rrrrr}3&1&-5&11&-9&-13\\& & 3& -6& 15& \color{black}{18} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{5}&\color{blue}{6}&\color{orangered}{5} \end{array} $$The solution is:
$$ \frac{ x^{4}-5x^{3}+11x^{2}-9x-13 }{ x-3 } = \color{blue}{x^{3}-2x^{2}+5x+6} ~+~ \frac{ \color{red}{ 5 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&-5&11&-9&-13\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}3&\color{orangered}{ 1 }&-5&11&-9&-13\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&-5&11&-9&-13\\& & \color{blue}{3} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ 3 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrr}3&1&\color{orangered}{ -5 }&11&-9&-13\\& & \color{orangered}{3} & & & \\ \hline &1&\color{orangered}{-2}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&-5&11&-9&-13\\& & 3& \color{blue}{-6} & & \\ \hline &1&\color{blue}{-2}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 11 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrrr}3&1&-5&\color{orangered}{ 11 }&-9&-13\\& & 3& \color{orangered}{-6} & & \\ \hline &1&-2&\color{orangered}{5}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 5 } = \color{blue}{ 15 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&-5&11&-9&-13\\& & 3& -6& \color{blue}{15} & \\ \hline &1&-2&\color{blue}{5}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 15 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrrr}3&1&-5&11&\color{orangered}{ -9 }&-13\\& & 3& -6& \color{orangered}{15} & \\ \hline &1&-2&5&\color{orangered}{6}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 6 } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&1&-5&11&-9&-13\\& & 3& -6& 15& \color{blue}{18} \\ \hline &1&-2&5&\color{blue}{6}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -13 } + \color{orangered}{ 18 } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrrr}3&1&-5&11&-9&\color{orangered}{ -13 }\\& & 3& -6& 15& \color{orangered}{18} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{5}&\color{blue}{6}&\color{orangered}{5} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}-2x^{2}+5x+6 } $ with a remainder of $ \color{red}{ 5 } $.