The synthetic division table is:
$$ \begin{array}{c|rrrrr}-3&1&0&-3&-9&-15\\& & -3& 9& -18& \color{black}{81} \\ \hline &\color{blue}{1}&\color{blue}{-3}&\color{blue}{6}&\color{blue}{-27}&\color{orangered}{66} \end{array} $$The solution is:
$$ \frac{ x^{4}-3x^{2}-9x-15 }{ x+3 } = \color{blue}{x^{3}-3x^{2}+6x-27} ~+~ \frac{ \color{red}{ 66 } }{ x+3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&0&-3&-9&-15\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-3&\color{orangered}{ 1 }&0&-3&-9&-15\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 1 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&0&-3&-9&-15\\& & \color{blue}{-3} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -3 } $
$$ \begin{array}{c|rrrrr}-3&1&\color{orangered}{ 0 }&-3&-9&-15\\& & \color{orangered}{-3} & & & \\ \hline &1&\color{orangered}{-3}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -3 \right) } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&0&-3&-9&-15\\& & -3& \color{blue}{9} & & \\ \hline &1&\color{blue}{-3}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 9 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrrr}-3&1&0&\color{orangered}{ -3 }&-9&-15\\& & -3& \color{orangered}{9} & & \\ \hline &1&-3&\color{orangered}{6}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 6 } = \color{blue}{ -18 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&0&-3&-9&-15\\& & -3& 9& \color{blue}{-18} & \\ \hline &1&-3&\color{blue}{6}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ \left( -18 \right) } = \color{orangered}{ -27 } $
$$ \begin{array}{c|rrrrr}-3&1&0&-3&\color{orangered}{ -9 }&-15\\& & -3& 9& \color{orangered}{-18} & \\ \hline &1&-3&6&\color{orangered}{-27}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -27 \right) } = \color{blue}{ 81 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&0&-3&-9&-15\\& & -3& 9& -18& \color{blue}{81} \\ \hline &1&-3&6&\color{blue}{-27}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -15 } + \color{orangered}{ 81 } = \color{orangered}{ 66 } $
$$ \begin{array}{c|rrrrr}-3&1&0&-3&-9&\color{orangered}{ -15 }\\& & -3& 9& -18& \color{orangered}{81} \\ \hline &\color{blue}{1}&\color{blue}{-3}&\color{blue}{6}&\color{blue}{-27}&\color{orangered}{66} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}-3x^{2}+6x-27 } $ with a remainder of $ \color{red}{ 66 } $.