The synthetic division table is:
$$ \begin{array}{c|rrrrr}1&1&-3&6&-12&8\\& & 1& -2& 4& \color{black}{-8} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{4}&\color{blue}{-8}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{4}-3x^{3}+6x^{2}-12x+8 }{ x-1 } = \color{blue}{x^{3}-2x^{2}+4x-8} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&-3&6&-12&8\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}1&\color{orangered}{ 1 }&-3&6&-12&8\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&-3&6&-12&8\\& & \color{blue}{1} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 1 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrr}1&1&\color{orangered}{ -3 }&6&-12&8\\& & \color{orangered}{1} & & & \\ \hline &1&\color{orangered}{-2}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&-3&6&-12&8\\& & 1& \color{blue}{-2} & & \\ \hline &1&\color{blue}{-2}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}1&1&-3&\color{orangered}{ 6 }&-12&8\\& & 1& \color{orangered}{-2} & & \\ \hline &1&-2&\color{orangered}{4}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 4 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&-3&6&-12&8\\& & 1& -2& \color{blue}{4} & \\ \hline &1&-2&\color{blue}{4}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -12 } + \color{orangered}{ 4 } = \color{orangered}{ -8 } $
$$ \begin{array}{c|rrrrr}1&1&-3&6&\color{orangered}{ -12 }&8\\& & 1& -2& \color{orangered}{4} & \\ \hline &1&-2&4&\color{orangered}{-8}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -8 \right) } = \color{blue}{ -8 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&-3&6&-12&8\\& & 1& -2& 4& \color{blue}{-8} \\ \hline &1&-2&4&\color{blue}{-8}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ \left( -8 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}1&1&-3&6&-12&\color{orangered}{ 8 }\\& & 1& -2& 4& \color{orangered}{-8} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{blue}{4}&\color{blue}{-8}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}-2x^{2}+4x-8 } $ with a remainder of $ \color{red}{ 0 } $.