The synthetic division table is:
$$ \begin{array}{c|rrrrr}-1&1&-3&0&5&-6\\& & -1& 4& -4& \color{black}{-1} \\ \hline &\color{blue}{1}&\color{blue}{-4}&\color{blue}{4}&\color{blue}{1}&\color{orangered}{-7} \end{array} $$The solution is:
$$ \frac{ x^{4}-3x^{3}+5x-6 }{ x+1 } = \color{blue}{x^{3}-4x^{2}+4x+1} \color{red}{~-~} \frac{ \color{red}{ 7 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&1&-3&0&5&-6\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-1&\color{orangered}{ 1 }&-3&0&5&-6\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&1&-3&0&5&-6\\& & \color{blue}{-1} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrrrr}-1&1&\color{orangered}{ -3 }&0&5&-6\\& & \color{orangered}{-1} & & & \\ \hline &1&\color{orangered}{-4}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -4 \right) } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&1&-3&0&5&-6\\& & -1& \color{blue}{4} & & \\ \hline &1&\color{blue}{-4}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 4 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}-1&1&-3&\color{orangered}{ 0 }&5&-6\\& & -1& \color{orangered}{4} & & \\ \hline &1&-4&\color{orangered}{4}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 4 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&1&-3&0&5&-6\\& & -1& 4& \color{blue}{-4} & \\ \hline &1&-4&\color{blue}{4}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}-1&1&-3&0&\color{orangered}{ 5 }&-6\\& & -1& 4& \color{orangered}{-4} & \\ \hline &1&-4&4&\color{orangered}{1}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&1&-3&0&5&-6\\& & -1& 4& -4& \color{blue}{-1} \\ \hline &1&-4&4&\color{blue}{1}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrrrr}-1&1&-3&0&5&\color{orangered}{ -6 }\\& & -1& 4& -4& \color{orangered}{-1} \\ \hline &\color{blue}{1}&\color{blue}{-4}&\color{blue}{4}&\color{blue}{1}&\color{orangered}{-7} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}-4x^{2}+4x+1 } $ with a remainder of $ \color{red}{ -7 } $.