The synthetic division table is:
$$ \begin{array}{c|rrrrr}4&1&-3&0&-7&-14\\& & 4& 4& 16& \color{black}{36} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{4}&\color{blue}{9}&\color{orangered}{22} \end{array} $$The solution is:
$$ \frac{ x^{4}-3x^{3}-7x-14 }{ x-4 } = \color{blue}{x^{3}+x^{2}+4x+9} ~+~ \frac{ \color{red}{ 22 } }{ x-4 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -4 = 0 $ ( $ x = \color{blue}{ 4 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&1&-3&0&-7&-14\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}4&\color{orangered}{ 1 }&-3&0&-7&-14\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 1 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&1&-3&0&-7&-14\\& & \color{blue}{4} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 4 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}4&1&\color{orangered}{ -3 }&0&-7&-14\\& & \color{orangered}{4} & & & \\ \hline &1&\color{orangered}{1}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 1 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&1&-3&0&-7&-14\\& & 4& \color{blue}{4} & & \\ \hline &1&\color{blue}{1}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 4 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}4&1&-3&\color{orangered}{ 0 }&-7&-14\\& & 4& \color{orangered}{4} & & \\ \hline &1&1&\color{orangered}{4}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 4 } = \color{blue}{ 16 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&1&-3&0&-7&-14\\& & 4& 4& \color{blue}{16} & \\ \hline &1&1&\color{blue}{4}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ 16 } = \color{orangered}{ 9 } $
$$ \begin{array}{c|rrrrr}4&1&-3&0&\color{orangered}{ -7 }&-14\\& & 4& 4& \color{orangered}{16} & \\ \hline &1&1&4&\color{orangered}{9}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 9 } = \color{blue}{ 36 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&1&-3&0&-7&-14\\& & 4& 4& 16& \color{blue}{36} \\ \hline &1&1&4&\color{blue}{9}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 36 } = \color{orangered}{ 22 } $
$$ \begin{array}{c|rrrrr}4&1&-3&0&-7&\color{orangered}{ -14 }\\& & 4& 4& 16& \color{orangered}{36} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{4}&\color{blue}{9}&\color{orangered}{22} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+x^{2}+4x+9 } $ with a remainder of $ \color{red}{ 22 } $.