The synthetic division table is:
$$ \begin{array}{c|rrrrr}1&1&0&-3&8&2\\& & 1& 1& -2& \color{black}{6} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{-2}&\color{blue}{6}&\color{orangered}{8} \end{array} $$The solution is:
$$ \frac{ x^{4}-3x^{2}+8x+2 }{ x-1 } = \color{blue}{x^{3}+x^{2}-2x+6} ~+~ \frac{ \color{red}{ 8 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-3&8&2\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}1&\color{orangered}{ 1 }&0&-3&8&2\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-3&8&2\\& & \color{blue}{1} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 1 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}1&1&\color{orangered}{ 0 }&-3&8&2\\& & \color{orangered}{1} & & & \\ \hline &1&\color{orangered}{1}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-3&8&2\\& & 1& \color{blue}{1} & & \\ \hline &1&\color{blue}{1}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 1 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrr}1&1&0&\color{orangered}{ -3 }&8&2\\& & 1& \color{orangered}{1} & & \\ \hline &1&1&\color{orangered}{-2}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-3&8&2\\& & 1& 1& \color{blue}{-2} & \\ \hline &1&1&\color{blue}{-2}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrrr}1&1&0&-3&\color{orangered}{ 8 }&2\\& & 1& 1& \color{orangered}{-2} & \\ \hline &1&1&-2&\color{orangered}{6}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 6 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-3&8&2\\& & 1& 1& -2& \color{blue}{6} \\ \hline &1&1&-2&\color{blue}{6}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 6 } = \color{orangered}{ 8 } $
$$ \begin{array}{c|rrrrr}1&1&0&-3&8&\color{orangered}{ 2 }\\& & 1& 1& -2& \color{orangered}{6} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{-2}&\color{blue}{6}&\color{orangered}{8} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+x^{2}-2x+6 } $ with a remainder of $ \color{red}{ 8 } $.