The synthetic division table is:
$$ \begin{array}{c|rrrrr}2&1&0&-13&0&36\\& & 2& 4& -18& \color{black}{-36} \\ \hline &\color{blue}{1}&\color{blue}{2}&\color{blue}{-9}&\color{blue}{-18}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{4}-13x^{2}+36 }{ x-2 } = \color{blue}{x^{3}+2x^{2}-9x-18} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&0&-13&0&36\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}2&\color{orangered}{ 1 }&0&-13&0&36\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&0&-13&0&36\\& & \color{blue}{2} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 2 } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrrr}2&1&\color{orangered}{ 0 }&-13&0&36\\& & \color{orangered}{2} & & & \\ \hline &1&\color{orangered}{2}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 2 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&0&-13&0&36\\& & 2& \color{blue}{4} & & \\ \hline &1&\color{blue}{2}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -13 } + \color{orangered}{ 4 } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrrr}2&1&0&\color{orangered}{ -13 }&0&36\\& & 2& \color{orangered}{4} & & \\ \hline &1&2&\color{orangered}{-9}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ -18 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&0&-13&0&36\\& & 2& 4& \color{blue}{-18} & \\ \hline &1&2&\color{blue}{-9}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -18 \right) } = \color{orangered}{ -18 } $
$$ \begin{array}{c|rrrrr}2&1&0&-13&\color{orangered}{ 0 }&36\\& & 2& 4& \color{orangered}{-18} & \\ \hline &1&2&-9&\color{orangered}{-18}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -18 \right) } = \color{blue}{ -36 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&0&-13&0&36\\& & 2& 4& -18& \color{blue}{-36} \\ \hline &1&2&-9&\color{blue}{-18}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 36 } + \color{orangered}{ \left( -36 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}2&1&0&-13&0&\color{orangered}{ 36 }\\& & 2& 4& -18& \color{orangered}{-36} \\ \hline &\color{blue}{1}&\color{blue}{2}&\color{blue}{-9}&\color{blue}{-18}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+2x^{2}-9x-18 } $ with a remainder of $ \color{red}{ 0 } $.