The synthetic division table is:
$$ \begin{array}{c|rrrrr}1&1&0&-13&0&36\\& & 1& 1& -12& \color{black}{-12} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{-12}&\color{blue}{-12}&\color{orangered}{24} \end{array} $$The solution is:
$$ \frac{ x^{4}-13x^{2}+36 }{ x-1 } = \color{blue}{x^{3}+x^{2}-12x-12} ~+~ \frac{ \color{red}{ 24 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-13&0&36\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}1&\color{orangered}{ 1 }&0&-13&0&36\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-13&0&36\\& & \color{blue}{1} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 1 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}1&1&\color{orangered}{ 0 }&-13&0&36\\& & \color{orangered}{1} & & & \\ \hline &1&\color{orangered}{1}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-13&0&36\\& & 1& \color{blue}{1} & & \\ \hline &1&\color{blue}{1}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -13 } + \color{orangered}{ 1 } = \color{orangered}{ -12 } $
$$ \begin{array}{c|rrrrr}1&1&0&\color{orangered}{ -13 }&0&36\\& & 1& \color{orangered}{1} & & \\ \hline &1&1&\color{orangered}{-12}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -12 \right) } = \color{blue}{ -12 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-13&0&36\\& & 1& 1& \color{blue}{-12} & \\ \hline &1&1&\color{blue}{-12}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -12 \right) } = \color{orangered}{ -12 } $
$$ \begin{array}{c|rrrrr}1&1&0&-13&\color{orangered}{ 0 }&36\\& & 1& 1& \color{orangered}{-12} & \\ \hline &1&1&-12&\color{orangered}{-12}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -12 \right) } = \color{blue}{ -12 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&1&0&-13&0&36\\& & 1& 1& -12& \color{blue}{-12} \\ \hline &1&1&-12&\color{blue}{-12}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 36 } + \color{orangered}{ \left( -12 \right) } = \color{orangered}{ 24 } $
$$ \begin{array}{c|rrrrr}1&1&0&-13&0&\color{orangered}{ 36 }\\& & 1& 1& -12& \color{orangered}{-12} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{-12}&\color{blue}{-12}&\color{orangered}{24} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+x^{2}-12x-12 } $ with a remainder of $ \color{red}{ 24 } $.