The synthetic division table is:
$$ \begin{array}{c|rrrr}-5&1&8&-4&-84\\& & -5& -15& \color{black}{95} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{blue}{-19}&\color{orangered}{11} \end{array} $$The solution is:
$$ \frac{ x^{3}+8x^{2}-4x-84 }{ x+5 } = \color{blue}{x^{2}+3x-19} ~+~ \frac{ \color{red}{ 11 } }{ x+5 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 5 = 0 $ ( $ x = \color{blue}{ -5 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&1&8&-4&-84\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-5&\color{orangered}{ 1 }&8&-4&-84\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ 1 } = \color{blue}{ -5 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&1&8&-4&-84\\& & \color{blue}{-5} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ \left( -5 \right) } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}-5&1&\color{orangered}{ 8 }&-4&-84\\& & \color{orangered}{-5} & & \\ \hline &1&\color{orangered}{3}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ 3 } = \color{blue}{ -15 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&1&8&-4&-84\\& & -5& \color{blue}{-15} & \\ \hline &1&\color{blue}{3}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ \left( -15 \right) } = \color{orangered}{ -19 } $
$$ \begin{array}{c|rrrr}-5&1&8&\color{orangered}{ -4 }&-84\\& & -5& \color{orangered}{-15} & \\ \hline &1&3&\color{orangered}{-19}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ \left( -19 \right) } = \color{blue}{ 95 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&1&8&-4&-84\\& & -5& -15& \color{blue}{95} \\ \hline &1&3&\color{blue}{-19}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -84 } + \color{orangered}{ 95 } = \color{orangered}{ 11 } $
$$ \begin{array}{c|rrrr}-5&1&8&-4&\color{orangered}{ -84 }\\& & -5& -15& \color{orangered}{95} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{blue}{-19}&\color{orangered}{11} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+3x-19 } $ with a remainder of $ \color{red}{ 11 } $.