The synthetic division table is:
$$ \begin{array}{c|rrrr}-7&1&8&6&-7\\& & -7& -7& \color{black}{7} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{-1}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}+8x^{2}+6x-7 }{ x+7 } = \color{blue}{x^{2}+x-1} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 7 = 0 $ ( $ x = \color{blue}{ -7 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&8&6&-7\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-7&\color{orangered}{ 1 }&8&6&-7\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 1 } = \color{blue}{ -7 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&8&6&-7\\& & \color{blue}{-7} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ \left( -7 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrr}-7&1&\color{orangered}{ 8 }&6&-7\\& & \color{orangered}{-7} & & \\ \hline &1&\color{orangered}{1}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 1 } = \color{blue}{ -7 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&8&6&-7\\& & -7& \color{blue}{-7} & \\ \hline &1&\color{blue}{1}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -7 \right) } = \color{orangered}{ -1 } $
$$ \begin{array}{c|rrrr}-7&1&8&\color{orangered}{ 6 }&-7\\& & -7& \color{orangered}{-7} & \\ \hline &1&1&\color{orangered}{-1}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&8&6&-7\\& & -7& -7& \color{blue}{7} \\ \hline &1&1&\color{blue}{-1}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ 7 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-7&1&8&6&\color{orangered}{ -7 }\\& & -7& -7& \color{orangered}{7} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{-1}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+x-1 } $ with a remainder of $ \color{red}{ 0 } $.