The synthetic division table is:
$$ \begin{array}{c|rrrr}-3&1&8&19&12\\& & -3& -15& \color{black}{-12} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{4}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}+8x^{2}+19x+12 }{ x+3 } = \color{blue}{x^{2}+5x+4} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&8&19&12\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-3&\color{orangered}{ 1 }&8&19&12\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 1 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&8&19&12\\& & \color{blue}{-3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrr}-3&1&\color{orangered}{ 8 }&19&12\\& & \color{orangered}{-3} & & \\ \hline &1&\color{orangered}{5}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 5 } = \color{blue}{ -15 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&8&19&12\\& & -3& \color{blue}{-15} & \\ \hline &1&\color{blue}{5}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 19 } + \color{orangered}{ \left( -15 \right) } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrr}-3&1&8&\color{orangered}{ 19 }&12\\& & -3& \color{orangered}{-15} & \\ \hline &1&5&\color{orangered}{4}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 4 } = \color{blue}{ -12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&8&19&12\\& & -3& -15& \color{blue}{-12} \\ \hline &1&5&\color{blue}{4}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 12 } + \color{orangered}{ \left( -12 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-3&1&8&19&\color{orangered}{ 12 }\\& & -3& -15& \color{orangered}{-12} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{blue}{4}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+5x+4 } $ with a remainder of $ \color{red}{ 0 } $.