The synthetic division table is:
$$ \begin{array}{c|rrrr}-3&1&0&5&-6\\& & -3& 9& \color{black}{-42} \\ \hline &\color{blue}{1}&\color{blue}{-3}&\color{blue}{14}&\color{orangered}{-48} \end{array} $$The solution is:
$$ \frac{ x^{3}+5x-6 }{ x+3 } = \color{blue}{x^{2}-3x+14} \color{red}{~-~} \frac{ \color{red}{ 48 } }{ x+3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&0&5&-6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-3&\color{orangered}{ 1 }&0&5&-6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 1 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&0&5&-6\\& & \color{blue}{-3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -3 } $
$$ \begin{array}{c|rrrr}-3&1&\color{orangered}{ 0 }&5&-6\\& & \color{orangered}{-3} & & \\ \hline &1&\color{orangered}{-3}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -3 \right) } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&0&5&-6\\& & -3& \color{blue}{9} & \\ \hline &1&\color{blue}{-3}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 9 } = \color{orangered}{ 14 } $
$$ \begin{array}{c|rrrr}-3&1&0&\color{orangered}{ 5 }&-6\\& & -3& \color{orangered}{9} & \\ \hline &1&-3&\color{orangered}{14}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 14 } = \color{blue}{ -42 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&0&5&-6\\& & -3& 9& \color{blue}{-42} \\ \hline &1&-3&\color{blue}{14}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ \left( -42 \right) } = \color{orangered}{ -48 } $
$$ \begin{array}{c|rrrr}-3&1&0&5&\color{orangered}{ -6 }\\& & -3& 9& \color{orangered}{-42} \\ \hline &\color{blue}{1}&\color{blue}{-3}&\color{blue}{14}&\color{orangered}{-48} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-3x+14 } $ with a remainder of $ \color{red}{ -48 } $.