The synthetic division table is:
$$ \begin{array}{c|rrrr}3&1&5&-33&25\\& & 3& 24& \color{black}{-27} \\ \hline &\color{blue}{1}&\color{blue}{8}&\color{blue}{-9}&\color{orangered}{-2} \end{array} $$The solution is:
$$ \frac{ x^{3}+5x^{2}-33x+25 }{ x-3 } = \color{blue}{x^{2}+8x-9} \color{red}{~-~} \frac{ \color{red}{ 2 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&5&-33&25\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}3&\color{orangered}{ 1 }&5&-33&25\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&5&-33&25\\& & \color{blue}{3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 3 } = \color{orangered}{ 8 } $
$$ \begin{array}{c|rrrr}3&1&\color{orangered}{ 5 }&-33&25\\& & \color{orangered}{3} & & \\ \hline &1&\color{orangered}{8}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 8 } = \color{blue}{ 24 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&5&-33&25\\& & 3& \color{blue}{24} & \\ \hline &1&\color{blue}{8}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -33 } + \color{orangered}{ 24 } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrr}3&1&5&\color{orangered}{ -33 }&25\\& & 3& \color{orangered}{24} & \\ \hline &1&8&\color{orangered}{-9}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ -27 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&5&-33&25\\& & 3& 24& \color{blue}{-27} \\ \hline &1&8&\color{blue}{-9}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 25 } + \color{orangered}{ \left( -27 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrr}3&1&5&-33&\color{orangered}{ 25 }\\& & 3& 24& \color{orangered}{-27} \\ \hline &\color{blue}{1}&\color{blue}{8}&\color{blue}{-9}&\color{orangered}{-2} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+8x-9 } $ with a remainder of $ \color{red}{ -2 } $.