The synthetic division table is:
$$ \begin{array}{c|rrrr}6&1&4&-3&-6\\& & 6& 60& \color{black}{342} \\ \hline &\color{blue}{1}&\color{blue}{10}&\color{blue}{57}&\color{orangered}{336} \end{array} $$The solution is:
$$ \frac{ x^{3}+4x^{2}-3x-6 }{ x-6 } = \color{blue}{x^{2}+10x+57} ~+~ \frac{ \color{red}{ 336 } }{ x-6 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -6 = 0 $ ( $ x = \color{blue}{ 6 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{6}&1&4&-3&-6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}6&\color{orangered}{ 1 }&4&-3&-6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 6 } \cdot \color{blue}{ 1 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{6}&1&4&-3&-6\\& & \color{blue}{6} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ 6 } = \color{orangered}{ 10 } $
$$ \begin{array}{c|rrrr}6&1&\color{orangered}{ 4 }&-3&-6\\& & \color{orangered}{6} & & \\ \hline &1&\color{orangered}{10}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 6 } \cdot \color{blue}{ 10 } = \color{blue}{ 60 } $.
$$ \begin{array}{c|rrrr}\color{blue}{6}&1&4&-3&-6\\& & 6& \color{blue}{60} & \\ \hline &1&\color{blue}{10}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 60 } = \color{orangered}{ 57 } $
$$ \begin{array}{c|rrrr}6&1&4&\color{orangered}{ -3 }&-6\\& & 6& \color{orangered}{60} & \\ \hline &1&10&\color{orangered}{57}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 6 } \cdot \color{blue}{ 57 } = \color{blue}{ 342 } $.
$$ \begin{array}{c|rrrr}\color{blue}{6}&1&4&-3&-6\\& & 6& 60& \color{blue}{342} \\ \hline &1&10&\color{blue}{57}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 342 } = \color{orangered}{ 336 } $
$$ \begin{array}{c|rrrr}6&1&4&-3&\color{orangered}{ -6 }\\& & 6& 60& \color{orangered}{342} \\ \hline &\color{blue}{1}&\color{blue}{10}&\color{blue}{57}&\color{orangered}{336} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+10x+57 } $ with a remainder of $ \color{red}{ 336 } $.