The synthetic division table is:
$$ \begin{array}{c|rrrr}-7&1&13&50&56\\& & -7& -42& \color{black}{-56} \\ \hline &\color{blue}{1}&\color{blue}{6}&\color{blue}{8}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}+13x^{2}+50x+56 }{ x+7 } = \color{blue}{x^{2}+6x+8} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 7 = 0 $ ( $ x = \color{blue}{ -7 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&13&50&56\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-7&\color{orangered}{ 1 }&13&50&56\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 1 } = \color{blue}{ -7 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&13&50&56\\& & \color{blue}{-7} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 13 } + \color{orangered}{ \left( -7 \right) } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrr}-7&1&\color{orangered}{ 13 }&50&56\\& & \color{orangered}{-7} & & \\ \hline &1&\color{orangered}{6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 6 } = \color{blue}{ -42 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&13&50&56\\& & -7& \color{blue}{-42} & \\ \hline &1&\color{blue}{6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 50 } + \color{orangered}{ \left( -42 \right) } = \color{orangered}{ 8 } $
$$ \begin{array}{c|rrrr}-7&1&13&\color{orangered}{ 50 }&56\\& & -7& \color{orangered}{-42} & \\ \hline &1&6&\color{orangered}{8}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 8 } = \color{blue}{ -56 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&1&13&50&56\\& & -7& -42& \color{blue}{-56} \\ \hline &1&6&\color{blue}{8}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 56 } + \color{orangered}{ \left( -56 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-7&1&13&50&\color{orangered}{ 56 }\\& & -7& -42& \color{orangered}{-56} \\ \hline &\color{blue}{1}&\color{blue}{6}&\color{blue}{8}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+6x+8 } $ with a remainder of $ \color{red}{ 0 } $.