The synthetic division table is:
$$ \begin{array}{c|rrrr}-1&1&13&32&20\\& & -1& -12& \color{black}{-20} \\ \hline &\color{blue}{1}&\color{blue}{12}&\color{blue}{20}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}+13x^{2}+32x+20 }{ x+1 } = \color{blue}{x^{2}+12x+20} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&13&32&20\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-1&\color{orangered}{ 1 }&13&32&20\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&13&32&20\\& & \color{blue}{-1} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 13 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ 12 } $
$$ \begin{array}{c|rrrr}-1&1&\color{orangered}{ 13 }&32&20\\& & \color{orangered}{-1} & & \\ \hline &1&\color{orangered}{12}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 12 } = \color{blue}{ -12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&13&32&20\\& & -1& \color{blue}{-12} & \\ \hline &1&\color{blue}{12}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 32 } + \color{orangered}{ \left( -12 \right) } = \color{orangered}{ 20 } $
$$ \begin{array}{c|rrrr}-1&1&13&\color{orangered}{ 32 }&20\\& & -1& \color{orangered}{-12} & \\ \hline &1&12&\color{orangered}{20}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 20 } = \color{blue}{ -20 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&13&32&20\\& & -1& -12& \color{blue}{-20} \\ \hline &1&12&\color{blue}{20}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 20 } + \color{orangered}{ \left( -20 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-1&1&13&32&\color{orangered}{ 20 }\\& & -1& -12& \color{orangered}{-20} \\ \hline &\color{blue}{1}&\color{blue}{12}&\color{blue}{20}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+12x+20 } $ with a remainder of $ \color{red}{ 0 } $.