The synthetic division table is:
$$ \begin{array}{c|rrrr}-2&1&12&27&13\\& & -2& -20& \color{black}{-14} \\ \hline &\color{blue}{1}&\color{blue}{10}&\color{blue}{7}&\color{orangered}{-1} \end{array} $$The solution is:
$$ \frac{ x^{3}+12x^{2}+27x+13 }{ x+2 } = \color{blue}{x^{2}+10x+7} \color{red}{~-~} \frac{ \color{red}{ 1 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&12&27&13\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-2&\color{orangered}{ 1 }&12&27&13\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&12&27&13\\& & \color{blue}{-2} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 12 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 10 } $
$$ \begin{array}{c|rrrr}-2&1&\color{orangered}{ 12 }&27&13\\& & \color{orangered}{-2} & & \\ \hline &1&\color{orangered}{10}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 10 } = \color{blue}{ -20 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&12&27&13\\& & -2& \color{blue}{-20} & \\ \hline &1&\color{blue}{10}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 27 } + \color{orangered}{ \left( -20 \right) } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrr}-2&1&12&\color{orangered}{ 27 }&13\\& & -2& \color{orangered}{-20} & \\ \hline &1&10&\color{orangered}{7}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 7 } = \color{blue}{ -14 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&12&27&13\\& & -2& -20& \color{blue}{-14} \\ \hline &1&10&\color{blue}{7}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 13 } + \color{orangered}{ \left( -14 \right) } = \color{orangered}{ -1 } $
$$ \begin{array}{c|rrrr}-2&1&12&27&\color{orangered}{ 13 }\\& & -2& -20& \color{orangered}{-14} \\ \hline &\color{blue}{1}&\color{blue}{10}&\color{blue}{7}&\color{orangered}{-1} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+10x+7 } $ with a remainder of $ \color{red}{ -1 } $.