The synthetic division table is:
$$ \begin{array}{c|rrrr}1&1&-1&-12&-15\\& & 1& 0& \color{black}{-12} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{-12}&\color{orangered}{-27} \end{array} $$The solution is:
$$ \frac{ x^{3}-x^{2}-12x-15 }{ x-1 } = \color{blue}{x^{2}-12} \color{red}{~-~} \frac{ \color{red}{ 27 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-1&-12&-15\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}1&\color{orangered}{ 1 }&-1&-12&-15\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-1&-12&-15\\& & \color{blue}{1} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ 1 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}1&1&\color{orangered}{ -1 }&-12&-15\\& & \color{orangered}{1} & & \\ \hline &1&\color{orangered}{0}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-1&-12&-15\\& & 1& \color{blue}{0} & \\ \hline &1&\color{blue}{0}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -12 } + \color{orangered}{ 0 } = \color{orangered}{ -12 } $
$$ \begin{array}{c|rrrr}1&1&-1&\color{orangered}{ -12 }&-15\\& & 1& \color{orangered}{0} & \\ \hline &1&0&\color{orangered}{-12}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -12 \right) } = \color{blue}{ -12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-1&-12&-15\\& & 1& 0& \color{blue}{-12} \\ \hline &1&0&\color{blue}{-12}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -15 } + \color{orangered}{ \left( -12 \right) } = \color{orangered}{ -27 } $
$$ \begin{array}{c|rrrr}1&1&-1&-12&\color{orangered}{ -15 }\\& & 1& 0& \color{orangered}{-12} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{-12}&\color{orangered}{-27} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-12 } $ with a remainder of $ \color{red}{ -27 } $.