The synthetic division table is:
$$ \begin{array}{c|rrrr}-4&1&-1&-10&-8\\& & -4& 20& \color{black}{-40} \\ \hline &\color{blue}{1}&\color{blue}{-5}&\color{blue}{10}&\color{orangered}{-48} \end{array} $$The solution is:
$$ \frac{ x^{3}-x^{2}-10x-8 }{ x+4 } = \color{blue}{x^{2}-5x+10} \color{red}{~-~} \frac{ \color{red}{ 48 } }{ x+4 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 4 = 0 $ ( $ x = \color{blue}{ -4 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-4}&1&-1&-10&-8\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-4&\color{orangered}{ 1 }&-1&-10&-8\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 1 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-4}&1&-1&-10&-8\\& & \color{blue}{-4} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrrr}-4&1&\color{orangered}{ -1 }&-10&-8\\& & \color{orangered}{-4} & & \\ \hline &1&\color{orangered}{-5}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ \left( -5 \right) } = \color{blue}{ 20 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-4}&1&-1&-10&-8\\& & -4& \color{blue}{20} & \\ \hline &1&\color{blue}{-5}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 20 } = \color{orangered}{ 10 } $
$$ \begin{array}{c|rrrr}-4&1&-1&\color{orangered}{ -10 }&-8\\& & -4& \color{orangered}{20} & \\ \hline &1&-5&\color{orangered}{10}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 10 } = \color{blue}{ -40 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-4}&1&-1&-10&-8\\& & -4& 20& \color{blue}{-40} \\ \hline &1&-5&\color{blue}{10}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -8 } + \color{orangered}{ \left( -40 \right) } = \color{orangered}{ -48 } $
$$ \begin{array}{c|rrrr}-4&1&-1&-10&\color{orangered}{ -8 }\\& & -4& 20& \color{orangered}{-40} \\ \hline &\color{blue}{1}&\color{blue}{-5}&\color{blue}{10}&\color{orangered}{-48} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-5x+10 } $ with a remainder of $ \color{red}{ -48 } $.