The synthetic division table is:
$$ \begin{array}{c|rrrr}3&1&-9&20&-12\\& & 3& -18& \color{black}{6} \\ \hline &\color{blue}{1}&\color{blue}{-6}&\color{blue}{2}&\color{orangered}{-6} \end{array} $$The solution is:
$$ \frac{ x^{3}-9x^{2}+20x-12 }{ x-3 } = \color{blue}{x^{2}-6x+2} \color{red}{~-~} \frac{ \color{red}{ 6 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-9&20&-12\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}3&\color{orangered}{ 1 }&-9&20&-12\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-9&20&-12\\& & \color{blue}{3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 3 } = \color{orangered}{ -6 } $
$$ \begin{array}{c|rrrr}3&1&\color{orangered}{ -9 }&20&-12\\& & \color{orangered}{3} & & \\ \hline &1&\color{orangered}{-6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -6 \right) } = \color{blue}{ -18 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-9&20&-12\\& & 3& \color{blue}{-18} & \\ \hline &1&\color{blue}{-6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 20 } + \color{orangered}{ \left( -18 \right) } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrr}3&1&-9&\color{orangered}{ 20 }&-12\\& & 3& \color{orangered}{-18} & \\ \hline &1&-6&\color{orangered}{2}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 2 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-9&20&-12\\& & 3& -18& \color{blue}{6} \\ \hline &1&-6&\color{blue}{2}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -12 } + \color{orangered}{ 6 } = \color{orangered}{ -6 } $
$$ \begin{array}{c|rrrr}3&1&-9&20&\color{orangered}{ -12 }\\& & 3& -18& \color{orangered}{6} \\ \hline &\color{blue}{1}&\color{blue}{-6}&\color{blue}{2}&\color{orangered}{-6} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-6x+2 } $ with a remainder of $ \color{red}{ -6 } $.