The synthetic division table is:
$$ \begin{array}{c|rrrr}-3&1&-6&11&-6\\& & -3& 27& \color{black}{-114} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{38}&\color{orangered}{-120} \end{array} $$The solution is:
$$ \frac{ x^{3}-6x^{2}+11x-6 }{ x+3 } = \color{blue}{x^{2}-9x+38} \color{red}{~-~} \frac{ \color{red}{ 120 } }{ x+3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-6&11&-6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-3&\color{orangered}{ 1 }&-6&11&-6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 1 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-6&11&-6\\& & \color{blue}{-3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrr}-3&1&\color{orangered}{ -6 }&11&-6\\& & \color{orangered}{-3} & & \\ \hline &1&\color{orangered}{-9}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ 27 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-6&11&-6\\& & -3& \color{blue}{27} & \\ \hline &1&\color{blue}{-9}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 11 } + \color{orangered}{ 27 } = \color{orangered}{ 38 } $
$$ \begin{array}{c|rrrr}-3&1&-6&\color{orangered}{ 11 }&-6\\& & -3& \color{orangered}{27} & \\ \hline &1&-9&\color{orangered}{38}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 38 } = \color{blue}{ -114 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-6&11&-6\\& & -3& 27& \color{blue}{-114} \\ \hline &1&-9&\color{blue}{38}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ \left( -114 \right) } = \color{orangered}{ -120 } $
$$ \begin{array}{c|rrrr}-3&1&-6&11&\color{orangered}{ -6 }\\& & -3& 27& \color{orangered}{-114} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{38}&\color{orangered}{-120} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-9x+38 } $ with a remainder of $ \color{red}{ -120 } $.