The synthetic division table is:
$$ \begin{array}{c|rrrr}-1&1&-5&4&6\\& & -1& 6& \color{black}{-10} \\ \hline &\color{blue}{1}&\color{blue}{-6}&\color{blue}{10}&\color{orangered}{-4} \end{array} $$The solution is:
$$ \frac{ x^{3}-5x^{2}+4x+6 }{ x+1 } = \color{blue}{x^{2}-6x+10} \color{red}{~-~} \frac{ \color{red}{ 4 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-5&4&6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-1&\color{orangered}{ 1 }&-5&4&6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-5&4&6\\& & \color{blue}{-1} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ -6 } $
$$ \begin{array}{c|rrrr}-1&1&\color{orangered}{ -5 }&4&6\\& & \color{orangered}{-1} & & \\ \hline &1&\color{orangered}{-6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -6 \right) } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-5&4&6\\& & -1& \color{blue}{6} & \\ \hline &1&\color{blue}{-6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ 6 } = \color{orangered}{ 10 } $
$$ \begin{array}{c|rrrr}-1&1&-5&\color{orangered}{ 4 }&6\\& & -1& \color{orangered}{6} & \\ \hline &1&-6&\color{orangered}{10}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 10 } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&1&-5&4&6\\& & -1& 6& \color{blue}{-10} \\ \hline &1&-6&\color{blue}{10}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrrr}-1&1&-5&4&\color{orangered}{ 6 }\\& & -1& 6& \color{orangered}{-10} \\ \hline &\color{blue}{1}&\color{blue}{-6}&\color{blue}{10}&\color{orangered}{-4} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-6x+10 } $ with a remainder of $ \color{red}{ -4 } $.