The synthetic division table is:
$$ \begin{array}{c|rrrr}3&1&-2&1&6\\& & 3& 3& \color{black}{12} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{4}&\color{orangered}{18} \end{array} $$The solution is:
$$ \frac{ x^{3}-2x^{2}+x+6 }{ x-3 } = \color{blue}{x^{2}+x+4} ~+~ \frac{ \color{red}{ 18 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-2&1&6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}3&\color{orangered}{ 1 }&-2&1&6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-2&1&6\\& & \color{blue}{3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 3 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrr}3&1&\color{orangered}{ -2 }&1&6\\& & \color{orangered}{3} & & \\ \hline &1&\color{orangered}{1}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-2&1&6\\& & 3& \color{blue}{3} & \\ \hline &1&\color{blue}{1}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 1 } + \color{orangered}{ 3 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrr}3&1&-2&\color{orangered}{ 1 }&6\\& & 3& \color{orangered}{3} & \\ \hline &1&1&\color{orangered}{4}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 4 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-2&1&6\\& & 3& 3& \color{blue}{12} \\ \hline &1&1&\color{blue}{4}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ 12 } = \color{orangered}{ 18 } $
$$ \begin{array}{c|rrrr}3&1&-2&1&\color{orangered}{ 6 }\\& & 3& 3& \color{orangered}{12} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{4}&\color{orangered}{18} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+x+4 } $ with a remainder of $ \color{red}{ 18 } $.