The synthetic division table is:
$$ \begin{array}{c|rrrr}-11&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & -11& \frac{ 297 }{ 2 }& \color{black}{-1452} \\ \hline &\color{blue}{1}&\color{blue}{-\frac{ 27 }{ 2 }}&\color{blue}{132}&\color{orangered}{-1672} \end{array} $$The solution is:
$$ \frac{ x^{3}-\frac{ 5 }{ 2 }x^{2}-\frac{ 33 }{ 2 }x-220 }{ x+11 } = \color{blue}{x^{2}-\frac{ 27 }{ 2 }x+132} \color{red}{~-~} \frac{ \color{red}{ 1672 } }{ x+11 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 11 = 0 $ ( $ x = \color{blue}{ -11 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-11}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-11&\color{orangered}{ 1 }&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -11 } \cdot \color{blue}{ 1 } = \color{blue}{ -11 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-11}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & \color{blue}{-11} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -\frac{ 5 }{ 2 } } + \color{orangered}{ \left( -11 \right) } = \color{orangered}{ -\frac{ 27 }{ 2 } } $
$$ \begin{array}{c|rrrr}-11&1&\color{orangered}{ -\frac{ 5 }{ 2 } }&-\frac{ 33 }{ 2 }&-220\\& & \color{orangered}{-11} & & \\ \hline &1&\color{orangered}{-\frac{ 27 }{ 2 }}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -11 } \cdot \color{blue}{ \left( -\frac{ 27 }{ 2 } \right) } = \color{blue}{ \frac{ 297 }{ 2 } } $.
$$ \begin{array}{c|rrrr}\color{blue}{-11}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & -11& \color{blue}{\frac{ 297 }{ 2 }} & \\ \hline &1&\color{blue}{-\frac{ 27 }{ 2 }}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -\frac{ 33 }{ 2 } } + \color{orangered}{ \frac{ 297 }{ 2 } } = \color{orangered}{ 132 } $
$$ \begin{array}{c|rrrr}-11&1&-\frac{ 5 }{ 2 }&\color{orangered}{ -\frac{ 33 }{ 2 } }&-220\\& & -11& \color{orangered}{\frac{ 297 }{ 2 }} & \\ \hline &1&-\frac{ 27 }{ 2 }&\color{orangered}{132}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -11 } \cdot \color{blue}{ 132 } = \color{blue}{ -1452 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-11}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & -11& \frac{ 297 }{ 2 }& \color{blue}{-1452} \\ \hline &1&-\frac{ 27 }{ 2 }&\color{blue}{132}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -220 } + \color{orangered}{ \left( -1452 \right) } = \color{orangered}{ -1672 } $
$$ \begin{array}{c|rrrr}-11&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&\color{orangered}{ -220 }\\& & -11& \frac{ 297 }{ 2 }& \color{orangered}{-1452} \\ \hline &\color{blue}{1}&\color{blue}{-\frac{ 27 }{ 2 }}&\color{blue}{132}&\color{orangered}{-1672} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-\frac{ 27 }{ 2 }x+132 } $ with a remainder of $ \color{red}{ -1672 } $.