The synthetic division table is:
$$ \begin{array}{c|rrrr}-10&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & -10& 125& \color{black}{-1085} \\ \hline &\color{blue}{1}&\color{blue}{-\frac{ 25 }{ 2 }}&\color{blue}{\frac{ 217 }{ 2 }}&\color{orangered}{-1305} \end{array} $$The solution is:
$$ \frac{ x^{3}-\frac{ 5 }{ 2 }x^{2}-\frac{ 33 }{ 2 }x-220 }{ x+10 } = \color{blue}{x^{2}-\frac{ 25 }{ 2 }x+\frac{ 217 }{ 2 }} \color{red}{~-~} \frac{ \color{red}{ 1305 } }{ x+10 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 10 = 0 $ ( $ x = \color{blue}{ -10 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-10}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-10&\color{orangered}{ 1 }&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -10 } \cdot \color{blue}{ 1 } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-10}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & \color{blue}{-10} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -\frac{ 5 }{ 2 } } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ -\frac{ 25 }{ 2 } } $
$$ \begin{array}{c|rrrr}-10&1&\color{orangered}{ -\frac{ 5 }{ 2 } }&-\frac{ 33 }{ 2 }&-220\\& & \color{orangered}{-10} & & \\ \hline &1&\color{orangered}{-\frac{ 25 }{ 2 }}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -10 } \cdot \color{blue}{ \left( -\frac{ 25 }{ 2 } \right) } = \color{blue}{ 125 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-10}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & -10& \color{blue}{125} & \\ \hline &1&\color{blue}{-\frac{ 25 }{ 2 }}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -\frac{ 33 }{ 2 } } + \color{orangered}{ 125 } = \color{orangered}{ \frac{ 217 }{ 2 } } $
$$ \begin{array}{c|rrrr}-10&1&-\frac{ 5 }{ 2 }&\color{orangered}{ -\frac{ 33 }{ 2 } }&-220\\& & -10& \color{orangered}{125} & \\ \hline &1&-\frac{ 25 }{ 2 }&\color{orangered}{\frac{ 217 }{ 2 }}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -10 } \cdot \color{blue}{ \frac{ 217 }{ 2 } } = \color{blue}{ -1085 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-10}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & -10& 125& \color{blue}{-1085} \\ \hline &1&-\frac{ 25 }{ 2 }&\color{blue}{\frac{ 217 }{ 2 }}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -220 } + \color{orangered}{ \left( -1085 \right) } = \color{orangered}{ -1305 } $
$$ \begin{array}{c|rrrr}-10&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&\color{orangered}{ -220 }\\& & -10& 125& \color{orangered}{-1085} \\ \hline &\color{blue}{1}&\color{blue}{-\frac{ 25 }{ 2 }}&\color{blue}{\frac{ 217 }{ 2 }}&\color{orangered}{-1305} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-\frac{ 25 }{ 2 }x+\frac{ 217 }{ 2 } } $ with a remainder of $ \color{red}{ -1305 } $.